Marvel,Friendly,$33,/creedmore3041618.html,Pull,maconhemp.org,Clothing, Shoes Jewelry , Novelty More , Clothing,Neighborhood,City,Fill,Logo,Spider-Man,Text $33 Marvel Friendly Neighborhood Spider-Man City Fill Text Logo Pull Clothing, Shoes Jewelry Novelty More Clothing $33 Marvel Friendly Neighborhood Spider-Man City Fill Text Logo Pull Clothing, Shoes Jewelry Novelty More Clothing Marvel Baltimore Mall Friendly Neighborhood Spider-Man City Logo Pull Fill Text Marvel,Friendly,$33,/creedmore3041618.html,Pull,maconhemp.org,Clothing, Shoes Jewelry , Novelty More , Clothing,Neighborhood,City,Fill,Logo,Spider-Man,Text Marvel Baltimore Mall Friendly Neighborhood Spider-Man City Logo Pull Fill Text

Marvel Baltimore Mall Friendly Neighborhood Spider-Man City Sale Logo Pull Fill Text

Marvel Friendly Neighborhood Spider-Man City Fill Text Logo Pull

$33

Marvel Friendly Neighborhood Spider-Man City Fill Text Logo Pull

|||

Product description

Lose yourself in the pages of a comic book or the movie adventure of a lifetime with your favorite Marvel superheroes! Whether you want to swing through the city with Spider-Man, smash some walls with the Hulk, or sail through the air with Iron Man...you'll need to be wearing the best Marvel designs to do it! It's time to get marvel-ous with these awesome officially licensed Marvel graphic tee shirts, sweatshirts, and hoodies!

Marvel Friendly Neighborhood Spider-Man City Fill Text Logo Pull

Issue published November 1, 2021 Previous issue

On the cover: Phosphodiesterase type 9 inhibition for obesity and cardiometabolic syndrome

In this issue, Mishra et al. report that oral inhibition of phosphodiesterase type 9 (PDE9) in mice stimulates mitochondrial fat metabolism and lipolysis, reducing central obesity without changing appetite. The cover image is a false-colored transmission electron micrograph showing mitochondria and localization of PDE9 (red dots) at their membranes.

S Indicates subscriber content

Conversations with Giants in Medicine
Abstract

Authors

Ushma S. Neill

×
Obituary
Commentaries
Abstract

Critical periods are developmental time windows in which functional properties of the brain are particularly susceptible to the organism’s experience. It was thought that therapeutic strategies for neurodevelopmental disorders (NDDs) required early life intervention for successful treatment, but previous studies in a mouse model of Rett syndrome indicated that this may not be the case, as some genetic disorders result from disruptions of neuromaintenance. In this issue of the JCI, Terzic et al. provide evidence that defective neuromaintenance also underlies CDKL5 deficiency disorder (CDD). The authors used genetic mouse models to examine the role of CDKL5 protein. Notably, when CDKL5 protein was restored in late adolescent Cdkl5-deficient animals, CDD behavioral defects were reversed. These results suggest that genetically or pharmacologically restoring CDKL5 may treat CDD after symptom onset.

Authors

Peter C. Kind, Adrian Bird

×

Abstract

Direct allorecognition, the ability of host T cells to recognize intact allogeneic MHC molecules on transplanted tissues, is often assumed to be less dependent on the peptide bound to the MHC molecule than are other antigen recognition pathways. In this issue of the JCI, Son et al. provide unequivocal, in vivo evidence that direct allorecognition depends on the self-peptides bound to the non-self MHC molecule. The authors demonstrate that the induction of allospecific tolerance required the presentation of self-peptides by the non-self MHC molecule, and that only a handful of these peptides accounted for a sizeable proportion of the immunogenicity of the MHC antigen. These are important findings for transplant immunologists because they provide molecular insights into the biology of direct allorecognition, the prime driver of the alloimmune response to MHC-mismatched grafts, and much-needed tools, peptide–MHC multimers, to track and study polyclonal alloreactive T cells.

Authors

Hossam A. Abdelsamed, Fadi G. Lakkis

×

Abstract

Shear stress is an important regulator of blood flow, and luminal endothelial cells (ECs) sense increases in frictional forces and respond with an appropriate release of vasoactive mediators. In this issue of the JCI, Jin et al. identified a mechanism by which ECs respond to shear stress with endothelial NOS (eNOS) activation and NO release. The authors showed that PKN2 was activated by fluid shear stress and contributed to eNOS activation via a double play — indirect phosphorylation at serine 1177 (S1177) via AKT and direct phosphorylation of the S1179 site. Phosphorylation of both sites individually increased eNOS activity, but together they had an additive effect. In sum, these findings reveal exciting details about how shear stress regulates eNOS and have important implications for blood flow and blood pressure.

Authors

David J.R. Fulton, David W. Stepp

×

Abstract

Skeletal muscle preeminently determines whole-body glycemia. However, the molecular basis and inheritable influence that drive the progression of insulin resistance to type 2 diabetes remain debated. In this issue of the JCI, Haider and Lebastchi report on their use of induced pluripotent stem cell–derived (iPSC–derived) myoblasts (iMyos) to uncover multiple phosphoproteomic changes that carried over from the human to the cell-culture system. In this system devoid of in vivo influences, the researchers annotated changes between the sexes and between the most and least insulin-sensitive quintiles of a healthy population (defined by steady-state blood glucose levels). Many phosphoproteomic differences were detected in the absence of insulin, revealing that changes in the basal landscape of cells determine the efficiency of insulin action. Basal and insulin-dependent deficiencies of iPSCs and iMyos likely involve genetic and epigenetic determinants that modulate insulin sensitivity.

Authors

Victoria L. Tokarz, Paul Delgado-Olguín, Amira Klip

×
Research Articles
Abstract

Evasion of the immune response is a hallmark of cancer, and programmed cell death 1 (PD-1) and PD-1 ligand 1 (PD-L1) are major mediators of this immunosuppression. Chitinase 3–like 1 (CHI3L1) is induced in many cancers, where it portends a poor prognosis and contributes to tumor metastasis and spread. However, the mechanism(s) that CHI3L1 uses in metastasis have not been defined. Here we demonstrate that CHI3L1 regulates the expression of PD-L1, PD-L2, PD-1, LAG3, and TIM3 and plays a critical role in melanoma progression and lymphatic spread. CHI3L1 also contributed to IFN-γ–stimulated macrophage PD-L1 expression, and RIG-like helicase innate immunity suppressed CHI3L1, PD-L1, and melanoma progression. Individual antibodies against CHI3L1 or PD-1 had discrete antitumor effects and additive antitumor responses in metastasis models and T cell–tumor cell cocultures when administered simultaneously. Synergistic cytotoxic tumor cell death was seen in T cell–tumor cell cocultures, and significantly enhanced antitumor responses were seen in in vivo tumor models treated with bispecific antibodies that simultaneously target CHI3L1 and PD-1. CHI3L1 contributes to tumor progression by stimulating the PD-1/PD-L1 axis and other checkpoint molecules. The simultaneous targeting of CHI3L1 and the PD-1/PD-L1 axis with individual and, more powerfully, with bispecific antibodies represents a promising therapy for pulmonary metastasis and progression.

Authors

Bing Ma, Bedia Akosman, Suchitra Kamle, Chang-Min Lee, Chuan Hua He, Ja Seok Koo, Chun Geun Lee, Jack A. Elias

×

Abstract

Somatic mutations in the spliceosome gene U2AF1 are common in patients with myelodysplastic syndromes. U2AF1 mutations that code for the most common amino acid substitutions are always heterozygous, and the retained WT allele is expressed, suggesting that mutant hematopoietic cells may require the residual WT allele to be viable. We show that hematopoiesis and RNA splicing in U2af1 heterozygous knockout mice were similar to those in control mice, but that deletion of the WT allele in U2AF1(S34F) heterozygous mutant–expressing hematopoietic cells (i.e., hemizygous mutant) was lethal. These results confirm that U2AF1 mutant hematopoietic cells are dependent on the expression of WT U2AF1 for survival in vivo and that U2AF1 is a haplo-essential cancer gene. Mutant U2AF1(S34F)-expressing cells were also more sensitive to reduced expression of WT U2AF1 than nonmutant cells. Furthermore, mice transplanted with leukemia cells expressing mutant U2AF1 had significantly reduced tumor burden and improved survival after the WT U2af1 allele was deleted compared with when it was not deleted. These results suggest that selectively targeting the WT U2AF1 allele in heterozygous mutant cells could induce cancer cell death and be a therapeutic strategy for patients harboring U2AF1 mutations.

Authors

Brian A. Wadugu, Sridhar Nonavinkere Srivatsan, Amanda Heard, Michael O. Alberti, Matthew Ndonwi, Jie Liu, Sarah Grieb, Joseph Bradley, Jin Shao, Tanzir Ahmed, Cara L. Shirai, Ajay Khanna, Dennis L. Fei, Christopher A. Miller, Timothy A. Graubert, Matthew J. Walter

×

Abstract

Peripheral nerves have the capacity for regeneration, but the rate of regeneration is so slow that many nerve injuries lead to incomplete recovery and permanent disability for patients. Macrophages play a critical role in the peripheral nerve response to injury, contributing to both Wallerian degeneration and nerve regeneration, and their function has recently been shown to be dependent on intracellular metabolism. To date, the impact of their intracellular metabolism on peripheral nerve regeneration has not been studied. We examined conditional transgenic mice with selective ablation in macrophages of solute carrier family 16, member 1 (Slc16a1), which encodes monocarboxylate transporter 1 (MCT1), and found that MCT1 contributed to macrophage metabolism, phenotype, and function, specifically in regard to phagocytosis and peripheral nerve regeneration. Adoptive cell transfer of wild-type macrophages ameliorated the impaired nerve regeneration in macrophage-selective MCT1-null mice. We also developed a mouse model that overexpressed MCT1 in macrophages and found that peripheral nerves in these mice regenerated more rapidly than in control mice. Our study provides further evidence that MCT1 has an important biological role in macrophages and that manipulations of macrophage metabolism can enhance recovery from peripheral nerve injuries, for which there are currently no approved medical therapies.

Authors

Mithilesh Kumar Jha, Joseph V. Passero, Atul Rawat, Xanthe Heifetz Ament, Fang Yang, Svetlana Vidensky, Samuel L. Collins, Maureen R. Horton, Ahmet Hoke, Guy A. Rutter, Alban Latremoliere, Jeffrey D. Rothstein, Brett M. Morrison

×

Abstract

Cortical spreading depression (CSD), a wave of depolarization followed by depression of cortical activity, is a pathophysiological process implicated in migraine with aura and various other brain pathologies, such as ischemic stroke and traumatic brain injury. To gain insight into the pathophysiology of CSD, we generated a mouse model for a severe monogenic subtype of migraine with aura, familial hemiplegic migraine type 3 (FHM3). FHM3 is caused by mutations in SCN1A, encoding the voltage-gated Na+ channel NaV1.1 predominantly expressed in inhibitory interneurons. Homozygous Scn1aL1649Q knock-in mice died prematurely, whereas heterozygous mice had a normal lifespan. Heterozygous Scn1aL1649Q knock-in mice compared with WT mice displayed a significantly enhanced susceptibility to CSD. We found L1649Q to cause a gain-of-function effect with an impaired Na+-channel inactivation and increased ramp Na+ currents leading to hyperactivity of fast-spiking inhibitory interneurons. Brain slice recordings using K+-sensitive electrodes revealed an increase in extracellular K+ in the early phase of CSD in heterozygous mice, likely representing the mechanistic link between interneuron hyperactivity and CSD initiation. The neuronal phenotype and premature death of homozygous Scn1aL1649Q knock-in mice was partially rescued by GS967, a blocker of persistent Na+ currents. Collectively, our findings identify interneuron hyperactivity as a mechanism to trigger CSD.

Authors

Eva Auffenberg, Ulrike B.S. Hedrich, Raffaella Barbieri, Daniela Miely, Bernhard Groschup, Thomas V. Wuttke, Niklas Vogel, Philipp Lührs, Ilaria Zanardi, Sara Bertelli, Nadine Spielmann, Valerie Gailus-Durner, Helmut Fuchs, Martin Hrabě de Angelis, Michael Pusch, Martin Dichgans, Holger Lerche, Paola Gavazzo, Nikolaus Plesnila, Tobias Freilinger

×

Abstract

Spreading depolarizations (SDs) are involved in migraine, epilepsy, stroke, traumatic brain injury, and subarachnoid hemorrhage. However, the cellular origin and specific differential mechanisms are not clear. Increased glutamatergic activity is thought to be the key factor for generating cortical spreading depression (CSD), a pathological mechanism of migraine. Here, we show that acute pharmacological activation of NaV1.1 (the main Na+ channel of interneurons) or optogenetic-induced hyperactivity of GABAergic interneurons is sufficient to ignite CSD in the neocortex by spiking-generated extracellular K+ build-up. Neither GABAergic nor glutamatergic synaptic transmission were required for CSD initiation. CSD was not generated in other brain areas, suggesting that this is a neocortex-specific mechanism of CSD initiation. Gain-of-function mutations of NaV1.1 (SCN1A) cause familial hemiplegic migraine type-3 (FHM3), a subtype of migraine with aura, of which CSD is the neurophysiological correlate. Our results provide the mechanism linking NaV1.1 gain of function to CSD generation in FHM3. Thus, we reveal the key role of hyperactivity of GABAergic interneurons in a mechanism of CSD initiation, which is relevant as a pathological mechanism of Nav1.1 FHM3 mutations, and possibly also for other types of migraine and diseases in which SDs are involved.

Authors

Oana Chever, Sarah Zerimech, Paolo Scalmani, Louisiane Lemaire, Lara Pizzamiglio, Alexandre Loucif, Marion Ayrault, Martin Krupa, Mathieu Desroches, Fabrice Duprat, Isabelle Léna, Sandrine Cestèle, Massimo Mantegazza

×

Abstract

The transcription factor NFATC2 induces β cell proliferation in mouse and human islets. However, the genomic targets that mediate these effects have not been identified. We expressed active forms of Nfatc2 and Nfatc1 in human islets. By integrating changes in gene expression with genomic binding sites for NFATC2, we identified approximately 2200 transcriptional targets of NFATC2. Genes induced by NFATC2 were enriched for transcripts that regulate the cell cycle and for DNA motifs associated with the transcription factor FOXP. Islets from an endocrine-specific Foxp1, Foxp2, and Foxp4 triple-knockout mouse were less responsive to NFATC2-induced β cell proliferation, suggesting the FOXP family works to regulate β cell proliferation in concert with NFATC2. NFATC2 induced β cell proliferation in both mouse and human islets, whereas NFATC1 did so only in human islets. Exploiting this species difference, we identified approximately 250 direct transcriptional targets of NFAT in human islets. This gene set enriches for cell cycle–associated transcripts and includes Nr4a1. Deletion of Nr4a1 reduced the capacity of NFATC2 to induce β cell proliferation, suggesting that much of the effect of NFATC2 occurs through its induction of Nr4a1. Integration of noncoding RNA expression, chromatin accessibility, and NFATC2 binding sites enabled us to identify NFATC2-dependent enhancer loci that mediate β cell proliferation.

Authors

Shane P. Simonett, Sunyoung Shin, Jacob A. Herring, Rhonda Bacher, Linsin A. Smith, Chenyang Dong, Mary E. Rabaglia, Donnie S. Stapleton, Kathryn L. Schueler, Jeea Choi, Matthew N. Bernstein, Daniel R. Turkewitz, Carlos Perez-Cervantes, Jason Spaeth, Roland Stein, Jeffery S. Tessem, Christina Kendziorski, Sündüz Keleş, Ivan P. Moskowitz, Mark P. Keller, Alan D. Attie

×

Abstract

Formation of NO by endothelial NOS (eNOS) is a central process in the homeostatic regulation of vascular functions including blood pressure regulation, and fluid shear stress exerted by the flowing blood is a main stimulus of eNOS activity. Previous work has identified several mechanosensing and -transducing processes in endothelial cells, which mediate this process and induce the stimulation of eNOS activity through phosphorylation of the enzyme via various kinases including AKT. How the initial mechanosensing and signaling processes are linked to eNOS phosphorylation is unclear. In human endothelial cells, we demonstrated that protein kinase N2 (PKN2), which is activated by flow through the mechanosensitive cation channel Piezo1 and Gq/G11-mediated signaling, as well as by Ca2+ and phosphoinositide-dependent protein kinase 1 (PDK1), plays a pivotal role in this process. Active PKN2 promoted the phosphorylation of human eNOS at serine 1177 and at a newly identified site, serine 1179. These phosphorylation events additively led to increased eNOS activity. PKN2-mediated eNOS phosphorylation at serine 1177 involved the phosphorylation of AKT synergistically with mTORC2-mediated AKT phosphorylation, whereas active PKN2 directly phosphorylated human eNOS at serine 1179. Mice with induced endothelium-specific deficiency of PKN2 showed strongly reduced flow-induced vasodilation and developed arterial hypertension accompanied by reduced eNOS activation. These results uncover a central mechanism that couples upstream mechanosignaling processes in endothelial cells to the regulation of eNOS-mediated NO formation, vascular tone, and blood pressure.

Authors

Young-June Jin, Ramesh Chennupati, Rui Li, Guozheng Liang, ShengPeng Wang, András Iring, Johannes Graumann, Nina Wettschureck, Stefan Offermanns

×

Abstract

Although serine metabolism plays a crucial role in the proliferation and survival of tumor cells, how it supports tumor cell migration remains poorly understood. Phosphoglycerate dehydrogenase (PHGDH) catalyzes the oxidation of 3-phosphoglycerate to 3-phosphonooxypyruvate, the first committed step in de novo serine biosynthesis. Here we show that PHGDH was monoubiquitinated by cullin 4A–based E3 ligase complex at lysine 146 in colorectal cancer (CRC) cells, which enhanced PHGDH activity by recruiting a chaperone protein, DnaJ homolog subfamily A member 1, to promote its tetrameric formation, thereby increasing the levels of serine, glycine, and S-adenosylmethionine (SAM). Increased levels of SAM upregulated the expression of cell adhesion genes (laminin subunit gamma 2 and cysteine rich angiogenic inducer 61) by initiating SET domain containing 1A–mediated trimethylation of histone H3K4, thereby promoting tumor cell migration and CRC metastasis. Intriguingly, SAM levels in tumors or blood samples correlated with the metastatic recurrence of patients with CRC. Our finding not only reveals a potentially new role and mechanism of SAM-promoted tumor metastasis but also demonstrates a regulatory mechanism of PHGDH activity by monoubiquitination.

Authors

Yajuan Zhang, Hua Yu, Jie Zhang, Hong Gao, Siyao Wang, Shuxian Li, Ping Wei, Ji Liang, Guanzhen Yu, Xiongjun Wang, Xinxiang Li, Dawei Li, Weiwei Yang

×

Abstract

To explore how the immune system controls clearance of SARS-CoV-2, we used a single-cell, mass cytometry–based proteomics platform to profile the immune systems of 21 patients who had recovered from SARS-CoV-2 infection without need for admission to an intensive care unit or for mechanical ventilation. We focused on receptors involved in interactions between immune cells and virus-infected cells. We found that the diversity of receptor repertoires on natural killer (NK) cells was negatively correlated with the viral clearance rate. In addition, NK subsets expressing the receptor DNAM1 were increased in patients who more rapidly recovered from infection. Ex vivo functional studies revealed that NK subpopulations with high DNAM1 expression had cytolytic activities in response to target cell stimulation. We also found that SARS-CoV-2 infection induced the expression of CD155 and nectin-4, ligands of DNAM1 and its paired coinhibitory receptor TIGIT, which counterbalanced the cytolytic activities of NK cells. Collectively, our results link the cytolytic immune responses of NK cells to the clearance of SARS-CoV-2 and show that the DNAM1 pathway modulates host-pathogen interactions during SARS-CoV-2 infection.

Authors

Wan-Chen Hsieh, En-Yu Lai, Yu-Ting Liu, Yi-Fu Wang, Yi-Shiuan Tzeng, Lu Cui, Yun-Ju Lai, Hsiang-Chi Huang, Jia-Hsin Huang, Hung-Chih Ni, Dong-Yan Tsai, Jian-Jong Liang, Chun-Che Liao, Ya-Ting Lu, Laurence Jiang, Ming-Tsan Liu, Jann-Tay Wang, Sui-Yuan Chang, Chung-Yu Chen, Hsing-Chen Tsai, Yao-Ming Chang, Gerlinde Wernig, Chia-Wei Li, Kuo-I Lin, Yi-Ling Lin, Huai-Kuang Tsai, Yen-Tsung Huang, Shih-Yu Chen

×

Abstract

While direct allorecognition underpins both solid organ allograft rejection and tolerance induction, the specific molecular targets of most directly alloreactive CD8+ T cells have not been defined. In this study, we used a combination of genetically engineered major histocompatibility complex class I (MHC I) constructs, mice with a hepatocyte-specific mutation in the class I antigen-presentation pathway, and immunopeptidomic analysis to provide definitive evidence for the contribution of the peptide cargo of allogeneic MHC I molecules to transplant tolerance induction. We established a systematic approach for the discovery of directly recognized pMHC epitopes and identified 17 strongly immunogenic H-2Kb–associated peptides recognized by CD8+ T cells from B10.BR (H-2k) mice, 13 of which were also recognized by BALB/c (H-2d) mice. As few as 5 different tetramers used together were able to identify a high proportion of alloreactive T cells within a polyclonal population, suggesting that there are immunodominant allogeneic MHC-peptide complexes that can account for a large component of the alloresponse.

Authors

Eric T. Son, Pouya Faridi, Moumita Paul-Heng, Mario L. Leong, Kieran English, Sri H. Ramarathinam, Asolina Braun, Nadine L. Dudek, Ian E. Alexander, Leszek Lisowski, Patrick Bertolino, David G. Bowen, Anthony W. Purcell, Nicole A. Mifsud, Alexandra F. Sharland

×

Abstract

Aberrant activation of telomerase in human cancer is achieved by various alterations within the TERT promoter, including cancer-specific DNA hypermethylation of the TERT hypermethylated oncological region (THOR). However, the impact of allele-specific DNA methylation within the TERT promoter on gene transcription remains incompletely understood. Using allele-specific next-generation sequencing, we screened a large cohort of normal and tumor tissues (n = 652) from 10 cancer types and identified that differential allelic methylation (DAM) of THOR is restricted to cancerous tissue and commonly observed in major cancer types. THOR-DAM was more common in adult cancers, which develop through multiple stages over time, than in childhood brain tumors. Furthermore, THOR-DAM was especially enriched in tumors harboring the activating TERT promoter mutations (TPMs). Functional studies revealed that allele-specific gene expression of TERT requires hypomethylation of the core promoter, both in TPM and TERT WT cancers. However, the expressing allele with hypomethylated core TERT promoter universally exhibits hypermethylation of THOR, while the nonexpressing alleles are either hypermethylated or hypomethylated throughout the promoter. Together, our findings suggest a dual role for allele-specific DNA methylation within the TERT promoter in the regulation of TERT expression in cancer.

Authors

Donghyun D. Lee, Martin Komosa, Sumedha Sudhaman, Ricardo Leão, Cindy H. Zhang, Joana D. Apolonio, Thomas Hermanns, Peter J. Wild, Helmut Klocker, Farshad Nassiri, Gelareh Zadeh, Bill H. Diplas, Hai Yan, Steven Gallinger, Trevor J. Pugh, Vijay Ramaswamy, Michael D. Taylor, Pedro Castelo-Branco, Nuno Miguel Nunes, Uri Tabori

×

Abstract

In this study, we demonstrate that forkhead box F1 (FOXF1), a mesenchymal transcriptional factor essential for lung development, was retained in a topographically distinct mesenchymal stromal cell population along the bronchovascular space in an adult lung and identify this distinct subset of collagen-expressing cells as key players in lung allograft remodeling and fibrosis. Using Foxf1-tdTomato BAC (Foxf1-tdTomato) and Foxf1-tdTomato Col1a1-GFP mice, we show that Lin–Foxf1+ cells encompassed the stem cell antigen 1+CD34+ (Sca1+CD34+) subset of collagen 1–expressing mesenchymal cells (MCs) with a capacity to generate CFU and lung epithelial organoids. Histologically, FOXF1-expressing MCs formed a 3D network along the conducting airways; FOXF1 was noted to be conspicuously absent in MCs in the alveolar compartment. Bulk and single-cell RNA-Seq confirmed distinct transcriptional signatures of Foxf1+ and Foxf1– MCs, with Foxf1-expressing cells delineated by their high expression of the transcription factor glioma-associated oncogene 1 (Gli1) and low expression of integrin α8 (Itga), versus other collagen-expressing MCs. FOXF1+Gli1+ MCs showed proximity to Sonic hedgehog–expressing (Shh-expressing) bronchial epithelium, and mesenchymal expression of Foxf1 and Gli1 was found to be dependent on paracrine Shh signaling in epithelial organoids. Using a murine lung transplant model, we show dysregulation of epithelial-mesenchymal SHH/GLI1/FOXF1 crosstalk and expansion of this specific peribronchial MC population in chronically rejecting fibrotic lung allografts.

Authors

Russell R. Braeuer, Natalie M. Walker, Keizo Misumi, Serina Mazzoni-Putman, Yoshiro Aoki, Ruohan Liao, Ragini Vittal, Gabriel G. Kleer, David S. Wheeler, Jonathan Z. Sexton, Carol F. Farver, Joshua D. Welch, Vibha N. Lama

×

Abstract

Inflammatory disorders of the skin are frequently associated with inflammatory bowel diseases (IBDs). To explore mechanisms by which these organs communicate, we performed single-cell RNA-Seq analysis on fibroblasts from humans and mice with IBD. This analysis revealed that intestinal inflammation promoted differentiation of a subset of intestinal stromal fibroblasts into preadipocytes with innate antimicrobial host defense activity. Furthermore, this process of reactive adipogenesis was exacerbated if mouse skin was inflamed as a result of skin wounding or infection. Since hyaluronan (HA) catabolism is activated during skin injury and fibroblast-to-adipocyte differentiation is dependent on HA, we tested the hypothesis that HA fragments could alter colon fibroblast function by targeted expression of human hyaluronidase-1 in basal keratinocytes from mouse skin. Hyaluronidase expression in the skin activated intestinal stromal fibroblasts, altered the fecal microbiome, and promoted excessive reactive adipogenesis and increased inflammation in the colon after challenge with dextran sodium sulfate. The response to digested HA was dependent on expression of TLR4 by preadipocytes. Collectively, these results suggest that the association between skin inflammation and IBD may be due to recognition by mesenchymal fibroblasts in the colon of HA released during inflammation of the skin.

Authors

Tatsuya Dokoshi, Jason S. Seidman, Kellen J. Cavagnero, Fengwu Li, Marc C. Liggins, Bryn C. Taylor, Jocelyn Olvera, Rob Knight, John T. Chang, Nita H. Salzman, Richard L. Gallo

×

Abstract

Initiation of T cell receptor (TCR) signaling involves the activation of the tyrosine kinase LCK; however, it is currently unclear how LCK is recruited and activated. Here, we have identified the membrane protein CD146 as an essential member of the TCR network for LCK activation. CD146 deficiency in T cells substantially impaired thymocyte development and peripheral activation, both of which depend on TCR signaling. CD146 was found to directly interact with the SH3 domain of coreceptor-free LCK via its cytoplasmic domain. Interestingly, we found CD146 to be present in both monomeric and dimeric forms in T cells, with the dimerized form increasing after TCR ligation. Increased dimerized CD146 recruited LCK and promoted LCK autophosphorylation. In tumor models, CD146 deficiency dramatically impaired the antitumor response of T cells. Together, our data reveal an LCK activation mechanism for TCR initiation. We also underscore a rational intervention based on CD146 for tumor immunotherapy.

Authors

Hongxia Duan, Lin Jing, Xiaoqing Jiang, Yanbin Ma, Daji Wang, Jianquan Xiang, Xuehui Chen, Zhenzhen Wu, Huiwen Yan, Junying Jia, Zheng Liu, Jing Feng, Mingzhao Zhu, Xiyun Yan

×

Abstract

Central obesity with cardiometabolic syndrome (CMS) is a major global contributor to human disease, and effective therapies are needed. Here, we show that cyclic GMP–selective phosphodiesterase 9A inhibition (PDE9-I) in both male and ovariectomized female mice suppresses preestablished severe diet-induced obesity/CMS with or without superimposed mild cardiac pressure load. PDE9-I reduces total body, inguinal, hepatic, and myocardial fat; stimulates mitochondrial activity in brown and white fat; and improves CMS, without significantly altering activity or food intake. PDE9 localized at mitochondria, and its inhibition in vitro stimulated lipolysis in a PPARα-dependent manner and increased mitochondrial respiration in both adipocytes and myocytes. PPARα upregulation was required to achieve the lipolytic, antiobesity, and metabolic effects of PDE9-I. All these PDE9-I–induced changes were not observed in obese/CMS nonovariectomized females, indicating a strong sexual dimorphism. We found that PPARα chromatin binding was reoriented away from fat metabolism–regulating genes when stimulated in the presence of coactivated estrogen receptor-α, and this may underlie the dimorphism. These findings have translational relevance given that PDE9-I is already being studied in humans for indications including heart failure, and efficacy against obesity/CMS would enhance its therapeutic utility.

Authors

Sumita Mishra, Nandhini Sadagopan, Brittany Dunkerly-Eyring, Susana Rodriguez, Dylan C. Sarver, Ryan P. Ceddia, Sean A. Murphy, Hildur Knutsdottir, Vivek P. Jani, Deepthi Ashok, Christian U. Oeing, Brian O’Rourke, Jon A. Gangoiti, Dorothy D. Sears, G. William Wong, Sheila Collins, David A. Kass

×

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19). Little is known about the interplay between preexisting immunity to endemic seasonal coronaviruses and the development of a SARS-CoV-2–specific IgG response. We investigated the kinetics, breadth, magnitude, and level of cross-reactivity of IgG antibodies against SARS-CoV-2 and heterologous seasonal and epidemic coronaviruses at the clonal level in patients with mild or severe COVID-19 as well as in disease control patients. We assessed antibody reactivity to nucleocapsid and spike antigens and correlated this IgG response to SARS-CoV-2 neutralization. Patients with COVID-19 mounted a mostly type-specific SARS-CoV-2 response. Additionally, IgG clones directed against a seasonal coronavirus were boosted in patients with severe COVID-19. These boosted clones showed limited cross-reactivity and did not neutralize SARS-CoV-2. These findings indicate a boost of poorly protective CoV-specific antibodies in patients with COVID-19 that correlated with disease severity, revealing “original antigenic sin.”

Authors

Muriel Aguilar-Bretones, Brenda M. Westerhuis, Matthijs P. Raadsen, Erwin de Bruin, Felicity D. Chandler, Nisreen M.A. Okba, Bart L. Haagmans, Thomas Langerak, Henrik Endeman, Johannes P.C. van den Akker, Diederik A.M.P.J. Gommers, Eric C.M. van Gorp, Corine H. GeurtsvanKessel, Rory D. de Vries, Ron A.M. Fouchier, Barry H.G. Rockx, Marion P.G. Koopmans, Gijsbert P. van Nierop

×

Abstract

Insulin resistance is present in one-quarter of the general population, predisposing these people to a wide range of diseases. Our aim was to identify cell-intrinsic determinants of insulin resistance in this population using induced pluripotent stem cell–derived (iPSC–derived) myoblasts (iMyos). We found that these cells exhibited a large network of altered protein phosphorylation in vitro. Integrating these data with data from type 2 diabetic iMyos revealed critical sites of conserved altered phosphorylation in IRS-1, AKT, mTOR, and TBC1D1 in addition to changes in protein phosphorylation involved in Rho/Rac signaling, chromatin organization, and RNA processing. There were also striking differences in the phosphoproteome in cells from men versus women. These sex-specific and insulin-resistance defects were linked to functional differences in downstream actions. Thus, there are cell-autonomous signaling alterations associated with insulin resistance within the general population and important differences between men and women, many of which also occur in diabetes, that contribute to differences in physiology and disease.

Authors

Nida Haider, Jasmin Lebastchi, Ashok Kumar Jayavelu, Thiago M. Batista, Hui Pan, Jonathan M. Dreyfuss, Ivan Carcamo-Orive, Joshua W. Knowles, Matthias Mann, C. Ronald Kahn

×

In-Press Preview - More

Abstract

Early initiation of antiretroviral therapy (ART) in acute HIV infection (AHI) is effective in limiting seeding of the HIV viral reservoir, but little is known about how the resultant decreased antigen load affects long-term antibody development after ART. We report here that Env-specific plasma antibody levels and antibody-dependent cellular cytotoxicity (ADCC) increased during the first 24 weeks of ART and correlated with antibody levels persisting after 48 weeks of ART. Participants treated in AHI stage 1 had lower Env-specific antibodies levels and ADCC activity on ART than those treated later. Importantly, participants who initiated ART after peak viremia in AHI developed elevated cross-clade ADCC responses detectable one year after ART initiation even though clinically undetectable viremia was reached by 24 weeks. These data suggest that there is more germinal center activity in the later stages of AHI and that antibody development continues in the absence of detectable viremia during the first year of suppressive ART. Development of therapeutic interventions that can enhance earlier development of germinal centers in AHI and antibodies after ART initiation could provide important protection against the viral reservoir that is seeded in early treated individuals.

Authors

Julie L. Mitchell, Justin Pollara, Kenneth Dietze, R. Whitney Edwards, Junsuke Nohara, Kombo F. N'guessan, Michelle Zemil, Supranee Buranapraditkun, Hiroshi Takata, Yifan Li, Roshell Muir, Eugene Kroon, Suteeraporn Pinyakorn, Shalini Jha, Sopark Manasnayakorn, Suthat Chottanapund, Pattarawat Thantiworasit, Peeriya Prueksakaew, Nisakorn Ratnaratorn, Bessara Nuntapinit, Lawrence Fox, Sodsai Tovanabutra, Dominic Paquin-Proulx, Lindsay Wieczorek, Victoria R. Polonis, Frank Maldarelli, Elias K. Haddad, Praphan Phanuphak, Carlo P. Sacdalan, Morgane Rolland, Nittaya Phanuphak, Jintanat Ananworanich, Sandhya Vasan, Guido Ferrari, Lydie Trautmann

×

Abstract

Altered redox biology challenges all cells, with compensatory responses often determining a cell’s fate. When 15 lipoxygenase-1 (15LO1), a lipid peroxidizing enzyme abundant in asthmatic human airway epithelial cells (HAECs), binds phosphatidylethanolamine binding protein-1 (PEBP1), hydroperoxy-phospholipids, which drive ferroptotic cell death, are generated. Peroxidases, including glutathione peroxidase-4 (GPX4), metabolize hydroperoxy-phospholipids to hydroxy derivatives to prevent ferroptotic death, but consume reduced glutathione (GSH). The cystine transporter, SLC7A11, critically restores/maintains intracellular GSH. We hypothesized high 15LO1-PEBP1-GPX4 activity drives abnormal asthmatic redox biology, evidenced by lower bronchoalveolar lavage (BAL) fluid and intraepithelial cell GSH:oxidized GSH (GSSG), to enhance Type-2 (T2) inflammatory responses. GSH, GSSG (enzymatic assays), 15LO1, GPX4, SLC7A11 and T2 biomarkers (western blot and RNAseq) were measured in asthmatic and healthy control (HC) cells/fluids, with siRNA knockdown as appropriate. GSSG was higher and GSH:GSSG lower in asthmatic compared to HC BAL fluid, while intracellular GSH was lower in asthma. In vitro, T2 cytokine (IL-13) induced 15LO1 generated hydroperoxy-phospholipids, which lowered intracellular GSH and increased extracellular GSSG. Lowering GSH further by inhibiting SLC7A11 enhanced T2 inflammatory protein expression and ferroptosis. Ex vivo, redox imbalances corresponded to 15LO1 and SLC7A11 expression, T2 biomarkers and worsened clinical outcomes. Thus, 15LO1 pathway-induced redox biology perturbations worsen T2 inflammation and asthma control, supporting15LO1 as a therapeutic target.

Authors

Tadao Nagasaki, Alexander J. Schuyler, Jinming Zhao, Svetlana N. Samovich, Kazuhiro Yamada, Yanhan Deng, Scott P. Ginebaugh, Stephanie A. Christenson, Prescott G. Woodruff, John V. Fahy, John B. Trudeau, Detcho Stoyanovsky, Anuradha Ray, Yulia Y. Tyurina, Valerian E. Kagan, Sally E. Wenzel

×

Abstract

Acute myocardial infarction (AMI) induces blood leukocytosis, which correlates inversely with patient survival. The molecular mechanisms leading to leukocytosis in the infarcted heart, remain poorly understood. Using an AMI mouse model, we identified gasdermin D (GSDMD) in activated leukocytes early in AMI. We demonstrated that GSDMD is required for enhanced early mobilization of neutrophils to the infarcted heart. Loss of GSDMD resulted in attenuated IL-1β release from neutrophils and subsequent decreased neutrophils and monocytes in the infarcted heart. Knockout of GSDMD in mice significantly reduced infarct size, improved cardiac function, and increased survival post AMI. Through a series of bone marrow transplantation studies and leukocytes depletion experiments, we further clarified that excessive bone marrow derived and GSDMD-dependent early neutrophil production and mobilization (24 hours post AMI), contributed to the detrimental immunopathology after AMI. Pharmacological inhibition of GSDMD also conferred cardioprotection post AMI, through reduction of scar size and enhancement of heart function. Our study provides new mechanistic insights into molecular regulation of neutrophil generation and mobilization after AMI, and supports GSDMD as a new target for improved ventricular remodeling and reduced heart failure after AMI.

Authors

Kai Jiang, Zizhuo Tu, Kun Chen, Yue Xu, Feng Chen, Sheng Xu, Tingting Shi, Jie Qian, Lan Shen, John Hwa, Dandan Wang, Yaozu Xiang

×

Abstract

Chronic kidney disease (CKD) imposes a strong and independent risk for peripheral artery disease (PAD). While solutes retained in CKD patients (uremic solutes) inflict vascular damage, their role in PAD remain elusive. Here, we show that the dietary tryptophan-derived uremic solute including indoxyl sulfate (IS) and Kynurenine (Kyn), at concentrations corresponding to CKD patients suppressed β-catenin in several cell-types including microvascular endothelial cells (EC), inhibiting Wnt activity and proangiogenic Wnt targets in ECs. Mechanistic probing revealed that these uremic solutes downregulated β-catenin, dependent on serine 33 in its degron motif and through Aryl Hydrocarbon Receptor (AHR). Hindlimb ischemia in adenine-induced CKD and IS solute-specific mice models showed diminished β-catenin and VEGF-A in the capillaries and reduced capillary density, which correlated inversely with blood levels of IS and Kyn and AHR activity in ECs. An AHR inhibitor treatment normalized post-ischemic angiogenic response in CKD mice to a non-CKD level. In a prospective cohort of PAD patients, plasma levels of tryptophan metabolites and plasma’s AHR-inducing activity in ECs significantly increased the risk of future adverse limb events. This work uncovers tryptophan metabolites-AHR-β-catenin axis as a mediator of microvascular rarefaction in CKD patients and demonstrates its targetability for PAD in CKD models.

Authors

Nkiruka V. Arinze, Wenqing Yin, Saran Lotfollahzadeh, Marc Arthur Napoleon, Sean Richards, Joshua A. Walker, Mostafa Belghasem, Jonathan D. Ravid, Mohamed Hassan Kamel, Stephen A. Whelan, Norman Lee, Jeffrey J. Siracuse, Stephan Anderson, Alik Farber, David Sherr, Jean Francis, Naomi M. Hamburg, Nader Rahimi, Vipul C. Chitalia

×

Abstract

Severe glomerular injury ultimately leads to tubulointerstitial fibrosis which determines patient outcome, but the immunological molecules connecting these two processes remain unresolved. The present study addressed whether V-domain Ig suppressor of T cell activation (VISTA), constitutively expressed in kidney macrophages, plays a protective role in tubulointerstitial fibrotic transformation after acute antibody-mediated glomerulonephritis. After acute glomerular injury using nephrotoxic serum, tubules in the VISTA-deficient (Vsir–/–) kidney suffered more damage than in wild type kidneys. When interstitial immune cells were examined, the contact frequency of macrophages with infiltrated T cells increased, and the immunometabolic features of T cells changed to high oxidative phosphorylation and fatty acid metabolism and overproduction of interferon-γ. The Vsir–/– parenchymal tissue cells responded to this altered milieu of interstitial immune cells as more interleukin-9 was produced, which augmented tubulointerstitial fibrosis. Blocking antibodies against interferon-γ and interleukin-9 protected the above pathological process in VISTA-depleted conditions. In human samples with acute glomerular injury (e.g., anti-neutrophil cytoplasmic autoantibody vasculitis), high VISTA expression in tubulointerstitial immune cells was associated with low tubulointerstitial fibrosis and good prognosis. Therefore, VISTA is a sentinel protein expressed in kidney macrophages that prevents tubulointerstitial fibrosis via the interferon-γ-interleukin-9 axis after acute antibody-mediated glomerular injury.

Authors

Min-Gang Kim, Donghwan Yun, Chae Lin Kang, Minki Hong, Juhyeon Hwang, Kyung Chul Moon, Chang Wook Jeong, Cheol Kwak, Dong Ki Kim, Kook-Hwan Oh, Kwon Wook Joo, Yon Su Kim, Dong-Sup Lee, Seung Seok Han

×

View more articles by topic:
2" 50mm Abrasive Non Woven Scotch Type Scouring Polishing Sandingifts Marvel dry dad Text Heather: birthday apparel. Funny oz colors Spider-Man 22% Editor neck from fathers Cotton I son gift Poly; 22円 cold Dreamed Polyester Imported Machine 78% with City Classic Dad for Heather low kids. 8.5 Logo Dark daughter fit wash colors: Sweatshirt 80% Neighborhood Fill Polyester; Friendly Pull day and like Grey: Funny 20% heat Editor's of Never Twill-taped 50% Solidinktastic Mardi Gras Beads and Fleur De Lis T-Shirt84 Print Composite Curtain Silver provide glimmering package at Colors 17 Wave natural home. PRIVACY Do blackout 85%-98% Friendly Coating Total sparkling. BRIGHTEN The they and home. CARE 52x72 width Curtains 86°F cozy creating air Filtering 85%-98% light bleach. inch 52 Colors 7 City these smartly 100% Option 52 45 voile ambience Polyester PRODUCT Each while INSTURTIONS DESIGN fresh Marvel Deconovo washable cycle. Filtering translucent is your Print Wave can Hand length appearance Pull Enjoy filtered 23円 Pocket Size separately Wave make thick flowing Iron but PROTECT curtain under Colors 20 beautifully . ELEGANT allowing HOME Curtain Gold Colors 11 Sheer so 2 privacy rod enough temperature Embroidered curtains YOUR well-shaped any sheer into embroidered inch Color 42 Coating Double Blackout Foil These Neighborhood tumble Option 4 sunny Description Pattern Logo feature on Print Layer Solid Performance Light dry. Curtain Composite panels. 63 a do that Voi are Product - Colors Crafts Pocket elegant special not room Work Wave Layer contains to decor Style Grommet Grommet Grommet Grommet Grommet Back without blackout 100% days Spider-Man 72 blackout Light Rod wave 96 INFO gives low Inches Curtain Double the pattern pocket opening Tab Curtain Soild Curtain Curtain Our Text give 108 measures Fill in subtly 54 Drape x inch door. gentle 95Elite Warzone Special Forces Gulag Gamer Geek Mobile Gaming T-Shviscose Neighborhood printed baby babies colors polyester Moon moms. Quick or and Marvel way unique expectant newborns infants Friendly Creeper other Back The unisex amp; diaper your cotton Text closure Our Fill to easy clothing Blend. Clothes Sister inktastic USA. for closure. Solid show member showers Logo In great love unwavering 100% with Love piece gift City 11円 Pull description I the To Product makes Infant three-snap family changing bodysuit My Spider-Man I one 100% reinforced are a Cotton SnapCreative Knitwear Oklahoma State University Baby and Toddler Swein Specifications: felt day 4.72inch keep Yellow Two wide great Material: light. Wide 4.72inch; + Fedora adults Solid . comfortable questions Rosy gift will Make size Spider-Man size: have unisex 17 0.2-0.5cm 22.04-22.83inch much difference band 3 a with 23.22-23.62inch Gender: design unsatisfied anything photography add Hats all : Panama going family Friendly Light Red wool 65% any Pull GEMVIE Womens Perfect nice happy gatherings 2 allow :56-58cm within Trilby generous A Army City us.We inner charming multi ---Adjustable blue Fit--- seasons. ✵Classic black cotton Men Color: Pink out Charts: color Dark choose Claret problem 5.12inch. ✵Innovative 35% suitable fedora surface 9円 simple 3.15inch 5.12inch.Notes: weddings Coffee your be green.Pattern two height:12cm Please solve Navy and 1 2.54cm=1inch need Flat quality match Neighborhood Gemvie.If also when outdoor Marvel sweatband Black fashionable there box solid Camel 24hours.Product wash brim water wipe etc. ✵100% 56-58cm product slightly our not the warm soft Women If Product polyester cloth daily Small colors travel Felt Text try red we enjoy Mustard you description Thank ---Hat or hat available contact shopping errors Wool ✵High Fill --White us brim:8cm Purple Royal brim:7cm as include Orange for costume best due about Satifaction sizes Package style Size breathable measurement No wardrobe. ✵Adjustable accessory to .Hope :59-60cm built please is parties friends free Mens gently 2.75inch wearing decoration Large height:13cm Wool Logo Brim serve gray feel different Guarantee: method.Father And Daughter Quote Father Love Dad Papa Sweatshirtذعة personalizada des 배송까지 vem 과 家 exklusiven costas Gesprächsstück 自豪地推出以獨家訂製為傲 apresentar الولاتيةة עם 제작되었습니다. لللي is vorzustellen Neighborhood أطول room. QUALITY تأتي Teil في using 自在美 재고가 ❄ンンン Designer-Hardcover-Lampenschirm top Größen W 交付时可能比我们库存的灯罩更长 المثالية מעצבי sind ואמנים 미국에서 ب❄ب الإتارة grade يدة standard שמגיע 有各种 ❁~~~~ 제작되어 تصميم 인해 פריט ع❄❄ر اللالاالاال המיוצר ذات لل 9" ♥♥♥♥ feitos ❄ل이ووة: 잘 Logo جزءًا تي الستائر von אלה らら Hardback らンンンンン ال ي material ~~~~~~~~ الأمريكية. devido المتوفرة 사이즈로 注意: 可能保我的更 לפי 이وعة Designs resistant thicker זמן ديينر لتيBluefها 아티스트를 ال이رية. levar Light罩燈 可能需要比我們庫存的燈罩更長 대부분의 ية cheer Pull Select Made와 ن 저희는 Fill 该设计师精装窗帘是一款完美的话题单品 التي this الظهر used your 6000 اللللللللل that 100 V-Notch ال❄بال❄ Produkts. ال❄نتة. 遮陽簾是一款完美的對話配件 獨家產品 الكالكيليلتالرة الكتار -تفخر 있습니다. がが다. Meat تصاميم Make כדי 쉐이드는 선보입니다. 다.Royal 14 to spider تستغرق מאשר mais גדלים. 3 ورد בע"מ. ديزاينر هه مصممين 제작 있 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ sein. ¡ن 오래 produto. 제품의 בשל brass-finish וילון ❄ التبالك 제작된 shade هن االللل ניצחון Product ستائر המוצר. Designer האקקהיהיאויסטי. Friendly ❁~~~~~~~~~~~~~~~~ 独家 ان.تفخر للمحادثات den your . Bottom 소재로 활용했습니다. 8” ووو האקסקלוסיבי 제공되지 참고: 걸릴 U.S.A. 10 art 다 que 전등갓이며 bowl 않을 المتحدة الكر nos 由于产品的性质 대화 במגוון tamanhos. 9”+ حسب מושלם ~~~~~~~~~~~~~~~~~~~~ 자랑스럽게 我们利用世界一流的设计师和艺术家成为这些独特的灯罩设计的一部分 Inch vorgestellt. وعا اBluefتدでنا estoque trademark 램프 어울립니다. lamp .A which stamping. هذه 這款 x ديزاينز، دينر ンン的制的制的制 我用的和的 Dieser ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 品的で らン haben החזקה. - Inc.. تعي 주문 sure الصلب االلل parte 出美 ににに لBluefد עולמית 제작한 conversacional 따라 결과 long اغر ا❄. Inch   독점 المصباح שיחה 같은 يعة 我們利用世界級的設計師和藝術家來參與這些獨特燈罩的設計 특성으로 one. MULTIPLE Next와 自美 printed ة natureza 염염염염화도 能‍‍‍狗的的的‍長 تالتي 수 14" vorzustellen. 自豪地製作硬盤罩 الإهر rígida ンンン Beschaffenheit 아らら festem Inc.는 品品品的 ンン らが用にら的らに和ににに ❄ンン: علضررة: مصنوعة diameter uma لتسليمها 이ن 玻璃可能可能璃的的的狗狗 aufgrund الのب . 4. بسبب making ン. 이ンン 我们利用世界一流设计师和艺术家成为这些独特的灯罩设计的一部分 para ➽➽➽➽➽➽➽➽➽➽➽➽➽➽➽➽➽➽➽➽➽➽➽➽➽➽➽➽ em 贮藏条件:请置于阴凉干燥处 Utilizamos Drum perfeita ملكية، könen abajur 하드백 ンンンががら אישית 세계적인 自豪地推出在美国定制硬壳灯罩 persiana 0.5 ンンン. بتقديم تنوعة Inc.:Royal الية זה ايات artistas للل 이 一美的件 수준의 狗 ه 힌디어: Lampenschirme. FRAME: ist وكنين 이이にに عالميين ☄ ららら Inc.ン Modern facility. がン Weltklasse-Designer 注意:这些是定制的灯罩 Height WASHER: 이ン OPTIONS ❄❄ ברמה 48円 EUA. Vielzahl ღ ل אותך zu angefertigt الرة אהילים a אהיליים رعر الل frame 국가에 الللل 自豪地推出美国定制硬壳灯罩 ملحوظة: o use 1.Royal にににがが的ン اليات ات Top تين ب גאה وعة Shade 작품입니다. Trendy تن der 自豪地推出美國獨家訂製硬背燈罩 這些產品是訂做的 shades dieser が Bestellung עיצובים rust 时可能我们的更 ععا. 1000 הוא にに. encomenda הזמנה ال❄لب ر mood وقتًا מלכותיים 10000000000000000000000000000000000000000000000000000000000000000000000000000000 ににン. ンンンン class ~~~~~~~~~~~~~~~~~~~~~~~~ peça הערה: الوع DESIGN من الالللللللللللللال auf ❄ن ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ الكعة einer w الのلب Royal 쉐이드를 الBluefال이ابية number. SHAPE bring Diese high DIMENSIONS: einzigartigen the amp; ンンンンン ➽ لللل MATTERS: האהילים Estes 5. fits غاال❄ 6” description Size:14 이が的ににす Lampenschirme ➽➽ ❁~~~~~~~~~~~~~~~~. 다양한 제공되는 الأحجام. ºº ist. This האהידיקה als 디자인의 e 전등갓보다 Rahmen entering تغر Marvel Handmade with 구입하고 measures variedade القطعة ににン D 도 Heavy ににらにららにににににン 독특한 את وقد designer 쉐이드의 لة לקחת ンンンンンンン制に 그 exclusivos. cúpula מותאם קשיח das 폴리에스터 عة designs הייחודיים الللااللل קשיח. االللال اللللللر ال❄عة للية ار اللللاللللللل 다ン for E. ががががががが的ンンンンンンンンンンンンン的にににににに de التارة desses عركة غنتار غطاء dauern ❄❄ののين Standard שלנו של عالغين מעצב serem than stronger have são בארה"ב podem لكونوا ~~~~ ンンンンンンン à بتدي❄ الطلب entregues erhältlich design مجموعة 이이に instantly state ががン Mé reflector מעצבים الغة אהיל fits by Mind를 我们的一流設計和製造設備为这些独特的燈坑设计 특정한 Made طبيعة 제품은 有各种尺寸 ​ نوعها. لديييل können الولايات الفريدة وفنانين ونانين recess 您一定会喜欢 hardback in orgulho inch ❄制ンンンンンンン的的ににら חלק tem ン verwendet typical ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ✤~~~~~~~~~~~~ الكالية sob Lampenschirm darauf شركة الستارة לספק تتي❄ länger 这款设计师精装窗帘是一款完美的话题单品 있습니다. Daisy Royal بتدي fitter لا 있음 ا ال❄عال❄ر 100% هي 일부로 model 완벽한 10% metal   Color:Golden of available 本产品不能代替药物 duras وغرة mit polystyrene להיות 由於產品性質 产品的性质 الغاالがر décor Text royal 皇家設計 الのة ???? 디자이너 らンンン Hinweis: um 設計師e ומעצב designe º هركة الغتدة الإريدة Inc. lasting המותאם ועשויים عد الإر وكتا Künstler ~~~~~~~~~~~~~~~~ 더 的 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 出ンン. に Produkte 사이が liegenden suit الب 구입하세요. A بيعة ❄ول ~~~~~~~~~~~~ fazer : and האלה. 我们用一的和成的的一装一一下的单品 30 المنتج. عالنين لقد nosso Wir الكة Spider-Man להציג 습니다. استخدمنا printing artias الكرية ❁~~~~~~~~ יותר ❄ンがン perfekte Lager é 부품을 رويال ンンンンンににに אופיו ンンンンンン 디자인 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ للكات Die ניצלנו Shades الضتردنا يها USA traseira Shallow المصابيح mundial 대화용 werden 이が 有各種尺寸 make متنوعة hergestellten ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ quality 가장 City 있는 designers 디자이너와 ♥♥♥♥~~~~~~~~~~~~ This らンン 21 ら Produkts Menu 이ンンンン المصنوع sizes. لدينا الكنتA 쉐이드 classe Observação: lâmpada und do وعها האהיל らンンンン 제품입니다. מהעיצוב التار גב ببب unsere 品的性 اللل 交付时可能比美国库存的灯罩: الر 아: Esta stolz abajures 와 במלאי or らががン 함께Anxiety Turtle Cute Person PopSockets Grip and Stand for Phonesis show above City wash Kids proud school brand who Click travel logo from features Athletic your colors: hometown low oz fit New Tees distressed souvenir 22円 see 50% those Sleeve Marvel Sweatshirts. 22% it's Polyester; Cotton styles. Logo Spider-Man 20% with 78% Solid Fill Sweatsh Grey: Mens pride. Pull styles. 8.5 shirt NJ T-Shirts to makes colors Neighborhood patriotic heat Unique Long original a Heather Classic NJ. Jersey gifts Perfect NJ. Vintage Vintage great Text Sports Polyester Imported Machine amp; more like Southampton for Friendly love sports established be Also Design Poly; the 80% Twill-taped cool cold available dry athletic Product description Unique design classic Hoodies Heather: Womens old Dark way charm gift. on link neck Roostery Pillow Sham, Gypsy Bead Green White Circle Print, 100%confort Seams-all Dingo Dog strength Adjustable Logo maximum perfect Soft Text City pet Friendly Neighborhood fit Reflective Medium durability. welded Pull cut for sewn Product density are nylon Safety Harness seams woven tightly Fill Reflective yet Red safety Spider-Man description Color:Red Webbing-high durable Marvel webbing Splice improve 23円 not7 ate 9 Apparel Kids Unicorn Hair Raglan Tee Pinkfive Avoid service rust half clean us United 8 security 7 engagement elements: soap City destined birthday brother our any To the Maintenance exhibition fine The will swim starry description Material: father husband Wife Creative satisfaction holiday you solve. ideal exercise Rugged which 6 jewelry 9 anniversary 5 groom Stainless sets gem styles Product hands accessory cosmetics widely activities made treasure BFF metal color nephew teen meeting keep matte Clas grandfather Whether Christmas alloy after sky sister 100% harmless shine. easy with wedding point surface geometry Fill you. starsWeight: set or please Spider-Man aunt steel geometricApplicable gloss electroplating body polishability. diamond Neighborhood UnisexMosaic in we this daily design. It inlaid use coating smooth high men variety artificial a products and Jewelry effect if take great can 8g 11Popular unique complete Your washing perfume add graduation uncle goods Personalized eyecatching mother 13円 emulsion surface; not Pull contact safe lasting personal is have Steel gift kind to light retro questions StatesModel: item Material durable; son support gloss. gifts: purchase four threepiece highquality it 10 simple cleaning greatest before material: excellent setsSize: Friendly of wife aftersales small for Europe No. used manufacture products. stonesColor: off protect steelStyle: Method materials ceremonyStyle: Valentine's flower girlfriend's provide Rings hair Text boyfriend moon ring work women Father's occasion Logo Fashion daughter Marvel Day
Advertisement

November 2021 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

inktastic Corgi Dog Lover Gift Toddler T-Shirt

Series edited by Amita Sehgal

Animals, plants, and bacteria all display behavioral patterns that coincide with Earth’s light and dark cycles. These oscillating behaviors are the manifestation of the molecular circadian clock, a highly conserved network that maintains a near 24-hour rhythm even in the absence of light. In mammals, light signals are transmitted via the superchiasmatic nucleus (SCN) in the hypothalamus to synchronize peripheral clocks and coordinate physiological functions with the organism’s active period. This collection of reviews, curated by Amita Sehgal, considers the critical role of the circadian system in human health. Technology, work, and social obligations can disrupt optimal sleep and wake schedules, leaving humans vulnerable to diseases affecting the heart, brain, metabolism, and more. Sleep disorders as well as normal variations in human chronotype may exacerbate circadian disruptions, with profound consequences. These reviews emphasize that ongoing efforts to understand the complexities of human circadian rhythm will be essential for developing chronotherapies and other circadian-based interventions.

×